

Hybrid AI/HPC Approaches and Linear Algebra

Nahid Emad

University of Paris Saclay / UVSQ Maison de la Simulation & LI-PaRAD

Linear algebra main problem in ML/DL

- In machine learning, many problems can be solved by **linear transformations** and systems of linear equations.
- Let A and Y be n-size matrix representing a set of n observations and the vector of their labels. The search of a function f(A)=Y can be expressed as a linear system:

$$Ax=Y$$

• Let $(u_1, ..., u_n)$ be the set of eigenvectors of A. Their linear transformation by A does not change their orientation but only scales them.

Dominant eigenspace in ML

Principal Component Analysis: The goal is to find an orthonormal basis of the space of a dataset such that the variance of the dataset (degree of dispersion) in this basis is maximized. PCA helps reduce redundancies in datasets and extract important features while preserving accuracy.

- Let $X \in \mathbb{R}^{n \times p}$ be a centered matrix of n observations of p features. The PC of X are the dominant eigenvectors of its covariance matrix $A = \frac{1}{n}X^TX$.
- The PC of X are its dominant right singular vectors: $X = U\Sigma V^T$ with $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{p \times p}$ unitary and $\Sigma \in \mathbb{R}^{n \times p}$ diagonal matrices of singular values. $A = X^T X = V\Sigma^2 V^T$. The columns of V are the right singular vectors of X.

PageRank algorithm example: The Markov matrix leads to the equation which the steady state depends on one dominant component: $\lambda_1^k u_1 + \alpha_1 \lambda_2^k u_2 + ... + \alpha_n \lambda_1^k u_n$.

ML methods and linear algebra

Goal: Build smarter machines thinking and acting on their own (needs of training –still- and more and more data)

- Supervised machine learning methods
 - Linear regression, logistic regression, recommendation systems, ANN, etc.
 - Linear algebra problem as linear systems and eigenproblems
- Unsupervised machine learning methods
 - o K-means for partitioning, dimensionality reduction, CPA, etc.
 - Essentially eigenproblems and SVD
- Reinforcement learning methods (exploration & exploitation)
 - o Bandit, Markovian decision problems, game trees.

High performance data analysis

- Data production is now faster than compute capabilities
- Applications are classical simulation, social network-based simulation, ML algorithms
- Emerging Exascale supercomputers: Multi-level architectures (processor, memory, ...), mixed arithmetic (16, 32, 64 bits,...), ..., and convergence of distributed and parallel computing inside them.
- Need of new **programming paradigms** for this extreme computational and data sciences programming.
- New methods must be developed (involving applied math, graph theory, Bayesian network, statistic, linear algebra, game theory, ...) but also, the new approaches such as transformer used in NLP.
- Big Data analysis and HPC convergence is crucial to propose future machine learning algorithm for Post-Petascale platforms and supercomputers

New paradigms for new intelligent applications

Outline

- Main problems in linear algebra (moderate size)
- Large and sparse linear algebra problem
- High-performance AI and LA with applications
- Concluding remarks

Outline

- Main problems in linear algebra (moderate size)
- Large and sparse linear algebra problem
- High-performance AI and LA with applications
- Concluding remarks

Main problems in linear algebra (moderate size)

Linear system (LS):

Let $A \in \mathbb{C}^{n \times n}$, $b \in \mathbb{C}^n$, find $x \in \mathbb{C}^n$, such that : $A \cdot x = b$

Eigenproblem (EIG):

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $A \cdot u_i = \lambda_i \cdot u_i$ (i = 1, ..., n)

- Solving LS (topic well mastered overall)
 - > **Direct** methods as Gauss and Gauss-Jordan, Cholesky, Householder based on LU, Cholesky, QR decomposition.
 - > Iterative methods as Jacobi, Gauss-Seidel, Relaxation.
- Solving EIG (topic not so well mastered)
 - > Only iterative methods (Abel-Ruffini theorem) as Jacobi and QR

Focus on Eigenproblem

Eigenproblem (EIG):

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $: A.u_i = \lambda_i.u_i \quad (i = 1, ..., n)$

Power of eigenvectors:

- ✓ A doesn't change the orientation of an eigenvector and/or eigenspace but just scales it.
- ✓ Principal components or axes of dataset.

A	х	Ax
$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	$\binom{1}{2}$	$ \begin{array}{c} $
	$\binom{1}{1}$	• Scaled • Rotated (1)
Eigen-elements of A: λ_1 =0, λ_2 =5 and v_1 = $\binom{-2}{1}$, v_2 = $\binom{1}{2}$		

Focus on Eigenproblem

Eigenproblem (EIG):

Let $A \in \mathbb{C}^{n \times n}$, find $\lambda_i \in \mathbb{C}$ and $u_i \in \mathbb{C}^n$ such that $: A.u_i = \lambda_i.u_i \quad (i = 1, ..., n)$

Power of eigenvectors:

- ✓ A doesn't change the direction of an eigenvector and/or eigenspace but just scales it.
- ✓ Principal components or axes of dataset.

Outline

- Main problems in linear algebra (moderate size)
- Large and sparse linear algebra problem
- High-performance AI and LA with applications
- Concluding remarks

Large and sparse linear algebra problems

• Sparse dataset

- ➤ Avoiding fill-in iterative methods
- ➤ Problem : how to compress the dataset ? Use of ML methods

Large dataset

- Dimensionality reduction projection onto Krylov subspace
- Problem: how to choose the projection subspace? Too large/small-size, ...

Large and sparse linear algebra problems

Iterative projection method

- > Preserve sparsity
- > Reduce the problem size

Main problems for these methods

Sparsity processing

What about m?

Krylov subspace: better choice of \mathbf{v} for $\mathbb{K}_m(A, \mathbf{v}) = span(\mathbf{v}, Av, ..., A^{m-1}\mathbf{v})$ better choice of \mathbf{m} and \mathbf{v} ?

Unite and Conquer methods - an innovative approach

Suppose we have ℓ iterative methods to solve the same given problem. The unite and conquer approach consists of making collaborate these ℓ methods in order to accelerate the convergence of the whole system.

Characteristics of UC methods

- Multi level parallelism (heterogenous coarse and fine grain)
- Asynchronous communication
- Fault tolerance
- Great potential to dynamic load balancing
- Many parameters, many reuse software components
- Need well suited «standard» programming tools

Well suited to large-scale computing systems

Unite and Conquer methods - an innovative Approach

Suppose we have ℓ iterative methods to solve the same given problem. The unite and conquer approach consists of making collaborate these ℓ methods in order to accelerate the convergence of the whole system.

Well suited to large-scale computing systems

Unite and Conquer methods

Due to the numerical and computational properties of a UC method, its overall convergence and computational performance are better than that of each of its comethods individually.

- ➤ Multiple-Method: Case of UCM when the co-methods are the instances of the same iterative method. Example: MERAM, MIRAM, MIRLanczos, with different or nested subspaces.
- The asynchronism of communications implies better computational performance but introduces a certain *non-determinism*.
- The application of the UC approach to ML methods, which are inherently non-deterministic, does not suffer from this non-determinism.

Outline

- Main problems in linear algebra (moderate size)
- Large and sparse linear algebra problem
- High-performance AI and LA with applications
- Concluding remarks

HPC and AI convergence

- About ML/DL:
- 1943 : first NN
- 1957 : first NN with training
- 1974-1981 : "silence"
- 1981 : first perceptron multilayer
- **1990**: first CNN-LeCun
- 1997 : first RNN (LSTMs)
- Circa 2012: The flight of ML/DL with Big Data and computing power
- Circa 2017: Extension of NLP with transformers

Artificial Intelligence / Machine Learning Classification

http://image.slidesharecdn.com /deepdiveinaimlventurelandsca pe-150831132221-lva1app6891/95/deepdive-in-aimlventure-landscape-by-ajitnazre-rahul-garg-3-638.jpg?cb=1441027412

High performance AI and LA with applications

- 1. Sparse computation: a common topic of HP LA & ML/DL (supervised ML)
- 2. Focus on clustering (unsupervised ML) using UC methods
 - K-means and spectral computation
 - nvGraph of NVIDIA (https://github.com/rapidsai/nvgraph/blob/main/cpp/src/lanczos.cu)
- 3. Focus on (semi)supervised (classification) using UC methods
 - UCM application to ensemble learning
 - UCEL framework (the version for behavior profiling integrated to an alarm system in Atos company)

Sparse Computation: A common topic of HP LA & ML/DL

Automatic detection of the best sparse compression format as a function of the context (numerical method, parallel programming model, parallel/distributed architecture, etc.): Auto-Tuning, Expert System and then Machine Learning

Features: number of rows, nonzero elements, matrix density, the matrix is unstructured, is structured (diagonal, triangular, band, etc.), maximum/minimum number of nonzero elements per row (& par column), cost of a data parallel operation, number of physical/virtual processors, ...

Sparse Computation: A common topic of HPLA & ML/DL

Classifier accuracy (SVM): 95.65%. Formats: CSR, CSC, ELL, COOC, COOR. Hardware: Grid5K French national platform. Labeled data: 600

- Mehrez,, Hamdi, Dufaud, Emad. Machine Learning for Optimal Compression Format Prediction on Multiprocessor Platform. HPCS 2018: 213-220.
- Hamdi et al. Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations, Parallel Process. Lett. 31(4): 2150019:1-2150019:37 (2021).

Pipeline GPTune (https://gptune.lbl.gov/about) specifically designed for HPC applications (J. Demmel - UCB, Sherry Li, Hengrui Luo,... - LBNL).

Focus on clustering (unsupervised ML)

The multiple implicitly restarted Arnoldi MIRAMns and multiple implicitly restarted Lanczos methods MIRLanczos ns with nested subspaces are used.

Two main methods allow partitioning vertices V of a graph G = (V, E) in a set of clusters $S_k \subseteq V$ such that $V = \bigcup_{k=1}^p S_k$ are **modularity maximization** and **minimum balanced cut**. This by computing the largest eigenpairs of the modularity matrix or the smallest of the Laplacian matrix.

Focus on Clustering (2)

- 1. Let G = (V, E) be an input graph and A be its weighted adjacency matrix.
- 2. Let *p* be the number of desired clusters.
- 3. Set the modularity matrix $B = A \frac{1}{2\omega} v v^T$
- 4. Find p largest eigenpairs $BU = U\Sigma$, where $\Sigma = diag(\lambda_1, ..., \lambda_p)$
- 5. Scale eigenvectors *U* by row or by column (optional).
- 6. Run clustering algorithm, such as k-means, on points defined by rows of U.

Focus on Clustering (3)

Profiling: modularity clustering

The eigensolver takes 90% of the time

The sparse matrix vector multiplication takes 90% of the time in the eigensolver

Focus on clustering (4)

A. Fender, N. Emad, S. Petiton, M. Naumov, *Parallel Modularity Clustering*, Procedia Computer Science, Volume 108, 2017, Pages 1793-1802

SC22 | Dallas, TX | hpc accelerates.

Focus on (semi)supervised classification using UC methods

A process of categorizing a given dataset (structured or unstructured) into predefined classes (label

or categories).

Classification predictive modeling

- Binary classification
- Multi-class classification
- Multi-label classification
- Imbalanced classification

Jiang, Yiyue et al., Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscop, Lab Chip Journal, Vol. 17, 2426-2434, The Royal Society of Chemistry, 2017.

Classification methods: Logistic Regression, naive Bayes, stochastic Gradient Descent, KNN, Decision Tree, Random Forest, ANN, SVM, ...

Application UC approach to ensemble learning for classification

Ensemble Learning methods

Bagging technique

- 1. Start. Choose ℓ the number of the bags and $m \leq n$ the size of the bags.
- 2. Iterate. For $i = 1, ..., \ell$ do in parallel *a)Sampling*. Select the bag B_i by a random sampling technique with replacement on LD, *b)Training and testing*. Train a model L_i on the bag B_i and test L_i with TD dataset.
- 3. Share. On all the results of ℓ processes, use a selection system (like voting) to get the final prediction.

- Weak learner(s)
- Selection of the result by a voting system
- Intrinsic data parallelism

Ensemble Learning methods

Boosting technique

- 1. Start. Choose ℓ , m the number and the size of the bags, the base week leaner L_1 and define the bag B_1 =LD.
- 2. Iterate. For $i = 1, ..., \ell$ do
 - a) Training and testing. Train L_i leaner on dataset B_i , produce L_i model, test it on B_i and select W_i the k_i -size miss-predicted sub-dataset of LD. If $(P(L_i) \ge \theta)$ then put best = i and stop.
 - b) Sampling. Set the bag $B_{i+1} = (1 \alpha_i)$ $R_i \cup \alpha_i W_i$, where α_i is the weight given to misspredicted data and R_i is the set of $(m - k_i)$ correctly predicted data in B_i and go to 2.
- **3.** Result. Set L_{best} as a weighted combination of the previous ℓ leaners.
 - Iterative process
 - The miss-predicted data weighted more
 - Selection of a weighted combination of the learners

30

UCEL: Unite and Conquer and Ensemble Learning

- Co-methods: Ensemble base-learners
- Partial initial parameters: Bags
- Restarting strategy is based on intermediate global result of the learners

Bagging with ℓ processes (ℓ bags & ℓ leaners) where each process is itself a boosting process with q iterations. The bagging processes cooperate in the end of each boosting iteration by exchanging information.

- A. Diop, N. Emad, and T. Winter. A Parallel and Scalable Framework for Insider Threat Detection. In 27th IEEE International Conference HiPC, 16-19 Dec. 2020, Pune, India.
- A. Diop, N. Emad, and T. Winter. A Unite and Conquer Based Ensemble Learning Method for User Behavior Modeling. In 39th IEEE IPCCC Conference, Nov. 6th 8th, 2020, Austin, Texas, USA.

Parallel behavior profiler (in: $TD, VD, \ell, q, \theta, B_1$; out: B_{best}, L_{best})

```
Start. Choose \ell, m, B^1, L^0 the \ell bags and learners, ...
     Iterate. For i = 1, \dots, \ell do in parallel
      Iterate. For j = 1, \dots, q i^{th} computing node
3:
         Training and testing on MCN
4:
         Train L_i^{j-1} on B_i^j, produce L_i^j, test L_i^j on VD and select W_i^j.
        Communication send from MCN_i to (CN) \rightarrow control node
5:
         Send (B_i^j, L_i^j, W_i^j, AUC\text{-score}(L_i^j)) from MCN<sub>i</sub> to CN.
         Computation and stopping test on CN
6:
         WVC_i = V(L_i^j, AUC(L_i^j))
         B_{best}^j, L_{best}^j, W_{best}^j = f(L_i^j, B_i^j, W_i^j, WVC_j)
         If (AUC\text{-score}(L_{best}^j) > \theta) then STOP all processes.
        Communication send from CN to MCN<sub>i</sub>
7:
         Send (B_{best}^j, L_{best}^j, W_{best}^j) to all node i for i \in [1, \ell].
         Sampling on MCN_i
8:
        Set the bag B_i^{j+1} = (1-\alpha) * W_{hest}^j \cup (\alpha) * R_i^j where R_i^j is the set of (m_i - k_i^j)
         correctly predicted data in B_{best}^{j} with k_{i}^{j} = \mathbf{card}(W_{best}^{j}) and, \alpha is the updated
         weight given to miss-predicted data.
9:
         Result.
         Set L_{best} the best individual co-method or best weighted combination of co-
        methods during the iterations of all \ell processes.
```


Evolution of the AUC score over the cycles with anomaly detection co-methods

Left: MRobcov(10) vs individual boosted Robcov,

Right: 4 different anomaly detection methods vs individual boosted co-methods

Evolution of the AUC score over the cycles with focus on graph-based anomaly detection using PageRank co-methods.

Multiple PR(4)

BP (4AD, PR, LSTM)

Asynchronous communication: week & strong scalability

Weak scalability: due to the synchronization steps in the end of each cycle.

Strong scalability: the strong scalability of 10 MLP as co-methods, a dataset size of 500000 entries. The speedup increases from 1 to approximately 4.5 as the number of cores increases.

Impact of asynchronous and synchronous communication between co-methods on performance

Asynchronous vs Synchronous model speedup

Max speedup as a function #nodes

Outline

- Main problems in linear algebra (moderate size)
- Large and sparse linear algebra problem
- High-performance AI and LA with applications
- Concluding remarks

Concluding Remarks

- Important impact of hybrid HPAI & LA: Be aware of not always using the libraries.
- Interactions between machine learning and linear algebra approaches must be studied more.
 - > UCEL is a good example, and the approach is extensible.
 - ➤ Well adapted to high-performance parallel/distributed supercomputers
- ML presents a formidable tool bringing a tsunami of solutions to many problems
 - Experiment data (even when it does not seem interesting) must be saved...